Human behaviour recognition in data-scarce domains
نویسندگان
چکیده
منابع مشابه
Recognising high-level agent behaviour through observations in data scarce domains
This thesis presents a novel method for performing multi-agent behaviour recognition without requiring large training corpora. The reduced need for data means that robust probabilistic recognition can be performed within domains where annotated datasets are traditionally unavailable (e.g. surveillance, defence). Human behaviours are composed from sequences of underlying activities that can be u...
متن کاملpattern recognition in maintenance data using methodologies data minitng (cade study isfahan regional power electric company)
فعالیت های نگهداری و تعمیرات اطلاعاتی را تولید می کند که می تواند در تعیین زمان های بیکاری و ارایه یک برنامه زمان بندی شده یا تعیین هشدارهای خرابی به پرسنل نگهداری و تعمیرات کمک کند. وقتی که مقدار داده های تولید شده زیاد باشند، فهم بین متغیرها بسیار مشکل می شوند. این پایان نامه به کاربردی از داده کاوی برای کاوش پایگاه های داده چندبعدی در حوزه نگهداری و تعمیرات، برای پیدا کردن خرابی هایی که موجب...
15 صفحه اولBayesian adaptation of PLDA based speaker recognition to domains with scarce development data
Recently, speaker verification based on i-vectors and PLDA has become state-of-the art. This approach relays on models whose parameters need to be estimated from a development database with a large number of speech segments and speakers. That is one of the reasons why it has been very successful on NIST evaluations where we have sufficient data available. However, when we need to do speaker ver...
متن کاملHuman Behaviour Recognition with Segmented Inertial Data
The development and recent advancements of integrated inertial sensors has afforded substantive new possibilities for the acquisition and study of complex human motor skills and ultimately their imitation within robotic systems. This paper describes continuing work on kinetic models that are derived through unsupervised learning from a continuous stream of signals, including Euler angles and ac...
متن کاملTransfer Learning for Video Recognition with Scarce Training Data
Unconstrained video recognition and Deep Convolution Network (DCN) are two active topics in computer vision recently. In this work, we apply DCNs as frame-based recognizers for video recognition. Our preliminary studies, however, show that video corpora with complete ground truth are usually not large and diverse enough to learn a robust model. The networks trained directly on the video data se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pattern Recognition
سال: 2015
ISSN: 0031-3203
DOI: 10.1016/j.patcog.2015.02.019